Finden Sie schnell additive fertigung metall für Ihr Unternehmen: 14 Ergebnisse

Additive Fertigung

Additive Fertigung

Die additive Fertigung, auch bekannt als 3D-Druck, ist eine revolutionäre Technologie, die es Unternehmen ermöglicht, komplexe und maßgeschneiderte Produkte schnell und kostengünstig zu produzieren. Bei Kaiser Prototypenbau bieten wir umfassende Dienstleistungen im Bereich der additiven Fertigung an, die es unseren Kunden ermöglichen, ihre Produkte effizient und effektiv zu gestalten. Unsere erfahrenen Techniker verwenden fortschrittliche 3D-Drucktechnologien und Materialien, um sicherzustellen, dass die Produkte den höchsten Qualitätsstandards entsprechen und den spezifischen Anforderungen unserer Kunden gerecht werden.
Additive Fertigung

Additive Fertigung

Wir setzen seit 20 Jahren erfolgreich 3D-Drucken von Polymeren und Metallen in den Bereichen Prototyping, Hilfsmittel, Produktionshilfsmittel und Werkzeuge ein. Durch die Optimierung der Struktur – unter Berücksichtigung der Fertigung – wird der Materialverbrauch und die Bauzeit erheblich reduziert. In Kombination mit Spritzgießen kommen additive gefertigte Werkzeuge zum Einsatz. Mittels konturnaher Kühlung, Strukturoptimierung und bionischem Design werden Werkzeuge gebaut und zur Anwendung gebracht. Produktionszeiten und -kosten der Kunststoffteile können deutlich reduziert oder sogar nahezu halbiert werden.
Additive Fertigung

Additive Fertigung

Gemeinsam mit Partnerunternehmen bieten wir Ihnen Lösungen für Metall 3D-Druck bzw. 3D-Metalldruck an (Laser Metal Fusion oder kurz LMF), vom Prototypen bis zur Serie. Selbst komplexe Innenraumstrukturen können mit diesem Verfahren generiert werden. Gerne übernehmen wir auch die Weiter- und Nachbearbeitung (Passungen, Oberflächen) Ihrer selbst gefertigten Werkstücke auf unseren CNC- Dreh- und Fräszentren.
Additive Manufacturing

Additive Manufacturing

Additive Manufacturing. 3D-Metall- und Polymerdruck von Teilen für Projektevaluierung und Kleinserienproduktion.
3D Druck Metall

3D Druck Metall

Völlig neue Konstruktionsfreiheit Höhere Festigkeit bei geringerem Gewicht Integralbauweise Keine Kosten für Formen- bzw. Vorrichtungsbau und Werkzeuge Vorteile 3D Druck Metall > Völlig neue Konstruktionsfreiheit > Höhere Festigkeit bei geringerem Gewicht – Bauteile können aus Waben- oder Knochenstruktur oder biometrische Konturen gefertigt werden > Integralbauweise – Bauteile, die bisher aus mehreren Teilen bestanden haben, können nun als ein Bauteil gefertigt werden > Reduktion der „time to market” > Keine Kosten für Formen- bzw. Vorrichtungsbau und Werkzeuge Toleranzen und Oberflächen > Toleranzen bis zu +/- 0,05mm machbar, abhängig von der Bauteilgröße, -geometrie und Schichtstärke > Oberflächengüte von Rz 20 – 45µm, abhängig von Werkstoff, sowie der Schichtstärke bzw. Baurate und Ausrichtung der Fläche zur Bauplatte > Außenkonturen können mechanisch nachbearbeitet werden > Oberflächen von Innenkanäle können durch Strömungsgleitschleifen bis auf Rz 5µm bearbeitet werden
CNC Fräsen / CNC Bearbeiten

CNC Fräsen / CNC Bearbeiten

Auf unserer 4+2-Achsen-Bettfräsmaschine und 3+1-Achsen-Fräßmaschine lassen Sich Schweißbaugruppen präzise nach Ihren Vorgaben Bearbeiten.
3D Druck

3D Druck

Der 3D Druck bei Wittenbecher Maschinenbau nutzt die FFF-Methode (Fused Filament Fabrication), um Kunststoffteile mit hoher Präzision und Festigkeit zu fertigen. Diese innovative Technik ermöglicht die Herstellung von Ersatzteilen, Kleinserien und Prototypen mit komplexen Geometrien, die mit herkömmlichen Methoden schwer zu realisieren sind. Die Möglichkeit, Endlosfasern in die Werkstücke zu integrieren, erhöht die Festigkeit und eröffnet neue Anwendungsbereiche. Mit einer breiten Palette an Materialien wie Onyx, Nylon und PLA bietet der 3D Druck bei Wittenbecher Maschinenbau maßgeschneiderte Lösungen für unterschiedliche Anforderungen. Die Fähigkeit, funktionale Prototypen und Betriebsmittel effizient zu produzieren, macht den 3D Druck zu einem unverzichtbaren Bestandteil des Angebots, das sich durch Innovation und Qualität auszeichnet.
Fügen und Schweißen

Fügen und Schweißen

Unsere Fügen- und Schweißdienstleistungen bieten präzise und zuverlässige Lösungen für die Verbindung von Metallkomponenten. Mit modernster Technologie und einem erfahrenen Team von Fachleuten sind wir in der Lage, komplexe Schweißaufgaben effizient und präzise zu erledigen. Unsere Dienstleistungen umfassen verschiedene Schweißverfahren, darunter MIG, TIG und Punktschweißen, die auf die spezifischen Anforderungen unserer Kunden abgestimmt sind. Wir setzen auf höchste Qualitätsstandards und kontinuierliche Verbesserung, um sicherzustellen, dass unsere Kunden stets die bestmöglichen Lösungen erhalten. Unsere Fügen- und Schweißdienstleistungen sind darauf ausgelegt, die Produktionsprozesse zu optimieren und die Kosten zu senken. Vertrauen Sie auf unsere Erfahrung und Kompetenz, um Ihre Schweißprojekte erfolgreich umzusetzen.
Komponenten aus Edelmetall

Komponenten aus Edelmetall

Komponenten aus Edelmetalllegierungen für unterschiedlichste Märkte und Anwendungen Als Spezialist bei der Herstellung und Weiterverarbeitung von Edelmetall-Legierungen fertigen wir Komponenten für unterschiedlichste Branchen nach kundenspezifischen Vorgaben. Sowohl für Kleinstbauteile für die Medizintechnik aus Platin-Basis-Legierungen als auch für Komponenten aus verschiedenen Edelmetall-Legierungen für die Schmuck- und Uhrenindustrie liegt unser Fokus auf höchster Präzision und Prozesssicherheit. Die Kombination additiver und subtraktiver Verfahren ermöglicht eine drastische Erhöhung von Effizienz und Flexibilität.
Zusatzleistungen | Erodieren

Zusatzleistungen | Erodieren

Das Erodieren ist eine präzise Bearbeitungstechnik, die die BLAIER GmbH über ihr Netzwerk anbietet. Diese Technik ermöglicht die Herstellung komplexer Formen und feiner Details in Bauteilen durch den Einsatz von elektrischen Entladungen. Das Erodieren ist ideal für Anwendungen, die eine hohe Präzision und Detailgenauigkeit erfordern. Durch die Zusammenarbeit mit erfahrenen Partnern stellt die BLAIER GmbH sicher, dass die erodierten Bauteile den höchsten Qualitätsstandards entsprechen. Diese Dienstleistung ist ideal für Branchen, die auf präzise und komplexe Bauteile angewiesen sind. Die BLAIER GmbH bietet damit eine effektive Lösung für das Erodieren von Bauteilen.
3D Wasserstrahlschneiden

3D Wasserstrahlschneiden

Von komplexen 3D Anwendungen, bis zur einfachen Schweißnahtvorbereitung, können wir die Teile in einem Arbeitsschritt bearbeiten. Beispiele für Anwendungen: komplexe 3 D Geometrien mit umlaufend verschiedenen Schrägen Klöpperböden; Durchbrüche einbringen Rohre; Ausklingungen schneiden Teile für Rührwerke Unsere Anlagen können sowohl abrasiv für harte Werkstoffe, als auch Purwasser für Schaumstoffe usw. benutzt werden. Wir verfügen über insg. acht Anlagen - zwei Anlagen zum 3D Wasserstrahlschneiden. Diese ermöglichen uns maximale Flexibilität, sodass wir Ihren Anforderungen voll und ganz gerecht werden. Von der einfachen Schweißnahtvorbereitung bis zur komplexen 3D Anwendung können wir jegliche Freiformen der Bauteile in einem Fertigungsvorgang bearbeiten. Weiterhin bieten wir mit unserem Rohrmodul die Bearbeitung von Rohren und Wellen, sowie Vier- und Sechskantprofilen an.
2D Wasserstrahlschneiden

2D Wasserstrahlschneiden

2D Wasserstrahlschneiden Wasserstrahlschneiden für Bauteile bis 10.000 x 4.000 mm Bis zu sechs Schneidköpfe pro Anlage sichern Ihnen eine kostengünstige Fertigung, unabhängig davon, ob es sich um eine Einzelteil- oder um eine Großserienfertigung handelt. Durch unsere modernen CNC-Steuerungs- und Programmier-Systeme garantieren wir eine hohe Formgenauigkeit Ihrer Bauteile. Zusätzlich bieten unsere Anlagen Rationalisierungspotenzial durch: 4 einzeln ansteuerbare Schneidköpfe Rohrmodul 2 Bohreinheiten für Startlochbohrungen Abrasiv- und Purwasserschneiden
Wasserstrahlschneiden

Wasserstrahlschneiden

Bis zu sechs Schneidköpfe pro Anlage sichern Ihnen eine kostengünstige Fertigung, unabhängig davon, ob es sich um eine Einzelteil- oder um eine Großserienfertigung handelt. Allgemeine Information zum Wasserstrahlschneiden Die Wasserstrahl-Schneidetechnologie ist eine zukunftsorientierte und umweltfreundliche Möglichkeit für hohe Automatisierung beim Schneiden von allen Werkstoffen. Um einen Schneidestrahl zu erzeugen wird Wasser bis zu einem Druck von 4000 – 6000 bar erzeugt. Je nach Bearbeitungsanforderung wird das Wasser durch eine Düse von 0,08 mm bis 0,4 mm Durchmesser gedrückt. Dabei wird die Druckenergie in kinetische Energie umgewandelt. Der Schneidstrahl erreicht eine Beschleunigung von 900 m/s, bezogen auf Luft entspricht das etwa der dreifachen Schallgeschwindigkeit. Damit kann man z. B. Stahl- und Aluminiumerzeugnisse bis zu einer Dicke von 250 mm schneiden. Mit reinem Wasserstrahl – Purwasser – werden Textilien, Thermoplaste, Papier, Faserstoffe, dünne Kunststoffe, Elastomere usw. geschnitten. Zum Trennen von kompakten und harten Werkstoffen, wie Hartgestein, Metall, Panzerglas, Keramik usw. findet das Abrasiv-Schneideverfahren Anwendung. Eine Mikrozerspanung erfolgt, indem dem Wasserstrahl in einer Mischkammer Natursand zugeführt wird. Ende der 60er Jahre entschied sich ein amerikanischer Flugzeughersteller für das Wasserstrahlschneiden zur Bearbeitung von Faserverbund-, Waben- und Schichtwerkstoffen. Diese Materialien reagieren besonders empfindlich auf hohe Temperaturen und Drücke. Klassische Trennverfahren von Schweißbrennen über Sägen bis zu Tafelscheren würden die Struktur solcher Stoffe zerstören. Thermische Verfahren, wie zum Beispiel das Laserschneiden, verursachen oft Verbrennungen, Verschmelzungen und Gasentwicklung an den Schnittkanten. Laser- und Plasmaschneiden erzeugen bei den genannten Metallen Spannungen, Mikrorisse und Gefügeveränderungen. Bei Fräsbearbeitung ergibt sich oft eine ungünstige Materialausnutzung und ein hoher Werkzeugverschleiß. Vorteile der Wasserstrahlschneidetechnologie Kaltes Trennen ohne Wärmebeeinflussung, damit entfallen Aufhärtungen und Verzüge Optimale Materialausnutzung durch dünnste Trennfugen oder nahtlose Schachtelung Keine Deformation im Schnittbereich Sämtliche Materialien können auch in Sandwichbauweise bearbeitet werden Zuschnitt mehrlagig möglich Alle Konturen, enge Radien, dünne Wandstärken Hohe Präzision +/- 0,05 mm Umweltfreundlich, kein Staub, keine Dämpfe Flexible Fertigung Trennen von Edelstahl Aluminium Kupfer-, und Sonderwerkstoffen bis zu 250 mm Dicke, sonst nur durch Fräs- oder Sägebearbeitung möglich
SLS - Selektives Laserschmelzen

SLS - Selektives Laserschmelzen

Die Bauteilerstellung erfolgt in kürzester Zeit, direkt vom 3D Modell zum fertigen Werkstück, ohne Vorrichtungsbau und den damit verbundenen Kosten und Aufwand. Herstellungsverfahren Direkte Herstellung aus CAD-Daten Schichtweiser Aufbau der Bauteile Homogene Gefüge, Dichte > 99,6 % Vollwertige mechanische Eigenschaften Laserschmelzen Beispiele Laserschmelzen Beispiele Laserschmelzen Beispiele Laserschmelzen Beispiele Laserschmelzen Beispiele Laserschmelzen Beispiele Laserschmelzen Beispiele Das selektive Laserschmelzen kurz SLS ist ein generatives Produktionsverfahren, bei der das gewünschte Bauteil direkt aus 3D-Daten produziert wird. Anhand der vorliegenden Daten (Standardformat STL) lassen sich hochkomplexe Teile aus unterschiedlichen metallischen Werkstoffen herstellen. Durch eine bisher fehlende einheitliche Namensgebung des Verfahrens, ist es auch bekannt als Laserschmelzen, additive Fertigung, selektive Fertigung, SLS 3D Druck, generative Fertigung, Laser melting, Laser cusing, Laser Sintern, 3D Druck Metall, 3D Lasersintern usw. Anwendungsbereiche Prototypen für Funktionstests Einzelteile und Kleinserien Werkzeuge für Spritzguss -> enthalten konturnahe Kühlkanäle Ersatzteilnachbau für stillgelegte Serien konventionell nicht umsetzbare Teile Charakteristiken / Restriktionen Kleinste mögliche Strukturgrösse: 0.04-0.2 mm Genauigkeit: +/- 0.05-0.2 mm (+/- 0.1-0.2%) Kleinste Schichtdicke: 0.025 mm Typische Oberflächengüte: 4 – 10 microns RA Dichte: Bis zu 99.9 % Mindestwandstärke: 0.25 - 0.5 mm Selektives Laserschmelzen im Detail Mit dem SLS-Verfahren wird das Werkstück schichtweise dreidimensional aufgebaut. Dafür wird das Metall in sehr feiner Pulverform in Schichten (Layer) aufgetragen und durch den Laserstrahl dort geschmolzen, wo das Werkstück entstehen soll. Je nach Anforderung an Oberflächengüte und Fertigungsgeschwindigkeit wird das Pulver in Schichtdicken zwischen 20 und 80 µm aufgetragen. Anschließend schmilzt ein leistungsfähiger Faserlaser die vorgesehenen Bereiche selektiv auf. Die starke Fokussierung verleiht dem Laserstrahl eine sehr hohe Leistungsdichte, mit der das Material absolut präzise durchgeschmolzen wird. So lassen sich hundertprozentig dichte Werkstücke mit geringen Wandstärken erzeugen. Ist der Schmelzvorgang für die Schicht abgeschlossen, senkt sich die Plattform um die jeweilige Schichtstärke ab, damit eine weitere Pulverschicht aufgetragen werden kann. So wird das Werkstück Schicht für Schicht hergestellt.